Rain Garden Sizing & Design for Homeowner Rain Gardens

INTRODUCTION
This document will provide the basics for homeowner rain garden design. Rain gardens, including small homeowner and community gardens, are an important tool for watershed conservation and preservation. Rain gardens work by capturing, holding, and infiltrating rainwater run-off on individual sites. This keeps excess water from entering the storm drains and subsequently degrading our rivers and streams. The intention of this design guideline is to simplify the sizing process associated with rain gardens and to provide advice on sizing and location.

© State of Minnesota Stormwater Manual

WHAT IS A RAIN GARDEN AND HOW DOES IT WORK?
A rain garden is a depression in the landscape, designed and planted to trap, absorb, and filter storm water runoff and improve water quality. In a typical rain garden, each component performs an important role. A grass or rock buffer along the edge decreases velocity of the water entering the garden and filters out fine sediments that can clog a rain garden surface. The rain garden surface should be fairly level to spread out the incoming water and to promote infiltration. The mulch layer on top filters out pollutants, protects the underlying planting mix, and provides an environment for micro-organisms to

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.
degrade petroleum based products and other pollutants. The planting mix provides nutrients for the plants while also filtering out and absorbing pollutants. The plants can assimilate nutrients and pollutants while providing biodiversity and beauty. As such, each component is important for a properly functioning rain garden.

WHERE DO I LOCATE MY RAIN GARDEN?
The first step in designing a rain garden is deciding where on your property to place the garden. This requires observation of flow paths during and after heavy rainfall events. Ask yourself, “where is the water coming from and where is it heading?” Typically, there are three locations where a resident would want to locate a rain garden:

1. to catch roof run-off at the end of a downspout.
2. to catch water from paved surfaces such as driveways or roads in a front yard drainage swale.
3. to dry out a seasonally wet area.

Rain gardens are very good at collecting water off of paved surfaces and roofs. Therefore, it is wise to direct water into rain gardens from your driveway or from the end of a roof downspout. This will ensure the most “impact” of your rain garden with regards to capturing and treating run-off that otherwise might flow directly into a storm sewer.

Rain gardens can also be used to collect water from neighboring properties that flow onto your yard. However, it is important to determine the area of the land that will contribute to the rain garden prior to design and construction and to have realistic expectations on the amount of run-off that you can capture. This can be done by observing flow during a heavy rainfall event or by determining the high spots that delineate flow to your site versus other locations. Simply stated - water won’t flow uphill!

Rain gardens can also be effective at drying out low spots where water might temporarily pool or areas that are “wet”. A rain garden filled with compost can act like a sponge to “soak up” rainwater and eventually release it back into the atmosphere and/or slowly infiltrate it into the ground. However, it may not be a good idea to place your rain garden

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.
in a low spot that is perpetually wet since this area has poor infiltration and/or a high water table; and many plant species will “drown” if submerged for too long a period of time. If you do choose to place a rain garden in a perpetually wet area, choose plant species that are tolerant of wet conditions.

To avoid collecting too much water, consider how excess water from very heavy rainfall events will exit your rain garden. Excess water pooling can be avoided by utilizing an overflow such as a low spot along the edge of your rain garden or through an underground drainage system. It’s also important to not locate rain gardens in close proximity to foundations, since basement flooding could be an issue. Also, avoid disturbing mature trees and don’t locate rain gardens in the drip zone of a tree. Mature trees have excellent root systems that are already performing important ecological functions which should not be disturbed. Last, but hardly least, locate underground utilities before digging!

HOW DO I DETERMINE HOW MY WATER WILL INFILTRATE INTO THE GROUND?
The next, and most critical, step in designing a properly functioning rain garden is determining your local infiltration rate, or, in other words, how fast the water will seep into the ground. Once you have decided where to locate your rain garden, the infiltration rate can be approximated with a simple test:

1) Dig a hole 18” deep and 6” in diameter (a post hole digger will suffice).

2) Fill the hole to the top with water and let it drain (this will saturate the surrounding soil).

3) Re-fill the hole with water and measure how quickly it drains using a yard stick. If the hole drains 3” in a 6-hour period, your local infiltration rate is 0.5 inches per hour.

4) If the hole doesn’t drain completely in 48 hours, then this location doesn’t have good drainage. It may not be suitable for a rain garden unless the soil is amended or infiltration improved through mechanical means, such as placing an underdrain or tilling the native soils beneath the garden to improve infiltration.
Ideally, it is best to know the infiltration at the bottom of your rain garden. Therefore, if you are planning on excavating down 2 ft as part of your design, it is preferred to excavate the 2 ft of topsoil before digging your 18” deep hole and measuring infiltration. In addition, if you encounter standing water in your original hole before you add water, you have reached the seasonal water table for your location and might want to consider placing your rain garden in another location or designing a very shallow rain garden. For example, if the seasonal water table (signified by water in the test hole during wet months like April or May) is 3 feet below the ground, then you might want to design your rain garden to be only 1 foot deep. If you are planning your rain garden well in advance of construction, you might consider performing this test once in the spring and once in the summer dry season to see how drainage and the local water table varies.

HOW CAN I SIZE MY RAIN GARDEN?
Once you know your local infiltration, it is time to size your rain garden. The movement of water through soil can be described using a formula commonly known in science and engineering as Darcy’s Law. Since the function of rain gardens is based on the flow of water through soils, a version of Darcy’s Law can be used as part of the sizing process. A simplified version of Darcy’s Law can be found in the equation box below. In this equation, the surface area of the rain garden \((SA)\) is a function of the run-off coefficient \((c)\) which measures how much rain will flow off a surface, the total drainage area \((DA)\) that contributes to the rain garden, the depth of the planting mix \((depth)\), the height of ponding above the planting surface \((ponding)\), and the infiltration rate \((i)\) of the native soils.

\[
SA = \frac{0.04 \times c \times DA \times depth}{(i) \times (depth + ponding)}
\]

- \(SA\) = surface area of rain garden \((\text{ft}^2)\)
- \(DA\) = drainage area \((\text{ft}^2)\)
- \(depth\) = planting bed depth \((\text{ft})\)
- \(i\) = infiltration rate \((\text{ft per day})\)
- \(c\) = run-off coefficient (between 0.1 and 0.9 as described below)
- \(ponding\) = average ponding depth \((\text{ft})\)

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.
The advantage of using this formula to calculate your rain garden size is that it allows the homeowner to include information about local native soils by measuring the infiltration rate (i) where the garden will be placed. It also allows the homeowner to decide how deep of rain garden to excavate and how much ponding, if any, is desired. To simplify the more complex version of Darcy’s Law, several assumptions have already been made including that the rain garden will capture and treat the first 1” of rainfall and that it will drain over a 48 hour timeframe. This formula also assumes a well-maintained rain garden with a planting mix consisting of primary compost and sand. A well-maintained garden will have infiltration rates greater than the soil below, which is why the native soil infiltration is the key design component in Darcy’s Law. However, a rain garden that includes a significant amount of topsoil or that has been compacted by foot traffic or has been clogged by fine sediments might not infiltrate properly. To maintain a properly infiltrating rain garden, make sure to replace the mulch every couple of years, consider aerating or breaking up sections of the top layer of planting mix, have a grass or rock buffer around the edge to keep fine sediments out of the garden, and maintain good healthy plants.

The last important variable in the above equation is the run-off coefficient. The easiest way to conceptualize the run-off coefficient is to think of a spectrum between 0 and 1. A run-off coefficient of 0 would mean no run-off would result from a rainfall event (think of pouring a cup of water on a large sponge). The opposite end of the spectrum is a coefficient of 1, which mean every drop of water would run-off (think of pouring a cup of water on a baking tray). Realistically, the run-off coefficient for your yard will be between 0.1 and 0.9 as indicated in the figure below. A run-off coefficient of 0.1 would be a yard with exclusively naturalized areas and a run-off coefficient of 0.9 would be an area of all pavements.

For example, if you were designing a rain garden to accommodate water from a downspout, than you would use a run-off coefficient of 0.9. If you were designing a rain garden to handle water flowing from your lawn, than you would use a run-off coefficient of 0.3. If you are placing your rain garden to receive water from your driveway, a section

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.
of your manicured lawn, and perhaps a porous paver patio, than a run-off coefficient of 0.5 might be appropriate.

<table>
<thead>
<tr>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native</td>
<td>Lawn</td>
<td>Patio</td>
<td>Roof/Drive</td>
<td></td>
</tr>
</tbody>
</table>

Runoff coefficient spectrum

To determine the drainage area of each land use type flowing into a rain garden, use a tape measure to determine the approximate length and width of the area that will flow into the garden. The area is then the length times the width. For example, if your rain garden is designed to hold run-off from a 300ft long stretch of 30 ft wide road (half of which drains into your yard) in a front yard swale, then the drainage area for the sizing criteria would be 300ft x 15 ft = 5400 sq ft.

As a design example, assume that you are designing a rain garden to accommodate flow from a downspout that drains 1000 sq ft of roof (50 ft x 20 ft). Therefore, your run-off coefficient is 0.9. As part of your plan, you would like to have 1 ft of planting mix. You have conducted your post hole infiltration test and determined your infiltration rate to be 0.5 ft/day (moderately clay soil). Finally, the garden is in the front yard and you would prefer no more than 3” of standing water for a short period of time. Using Darcy’s Law,

\[
SA = \frac{0.04 \times c \times DA \times depth}{(i)(depth + ponding)} = \frac{0.04 \times 0.9 \times 1000 \times 1}{0.5 \times (1 + 0.25)} = 57.6 \text{ sq ft}
\]

yields a rain garden surface area of 57.6 sq ft or roughly a 6 ft by 10 ft garden. Increasing the allowable ponding to 6” will shrink the garden to 48 sq ft or roughly a 6 ft by 8 ft garden. If you don’t have 48 sq ft to devote to a rain garden, it is okay to construct a smaller garden, but make sure there is an overflow area or add an underground drain such that the excess water can escape without drowning all the plants. In this case, the overflow path needs to be no more than 6” higher than the top of the rain garden such that

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.
excess ponding will run off. In addition, don’t forget the 3” of mulch. If the rain garden will have 1 ft (12”) of planting mix, you will need to excavate down 15” to accommodate for the 3” mulch layer.

In addition, some general sizing and design recommendation include keeping the overall drainage area into your rain garden to less than 0.5 acres. It is better to have multiple smaller gardens spread out over a site than to try to design one larger rain garden to hold all of the water from the site. This is especially true for clay soil sites where infiltration will be poor. Rain gardens should be wider in the direction of a majority of incoming run-off. This will allow the water to spread out and improve drainage. The slope of the land adjacent to the rain garden should be no more than 3 ft in the horizontal direction to 1 ft in the vertical direction so the water entering the rain garden isn’t draining too quickly. Conversely, there needs to be some slope on the adjacent land (at least 10 ft in the horizontal to 1 ft in the vertical) to ensure the water flows into the garden and isn’t directed elsewhere. It is very important to maintain a grass or gravel buffer around a rain garden to limit incoming water velocities and to filter out fine sediments that might clog a rain garden. This is especially true from roof downspouts from which the water will flow with high velocity.

WHAT SHOULD MY PLANTING MIX CONSIST OF?
There are various reference materials available that specify planting mixtures. An often used and quoted mixture is 50% sand, 30% topsoil, and 20% compost. In clay soil site, a mixture of sharp non-rounded sand (between 0% and 50%) and compost (between 50% and 100%) works well for homeowner rain gardens. The amount of each material you choose depends on your infiltration and water retention goals. Compost is much more porous than sand. Because of this, compost acts like a sponge and will hold more than its weight in water. Therefore, if the goal of the rain garden design is to maximize water retention, then the amount of sand should be limited. This would be especially true if your native soils have poor infiltration or high clay content. In these cases, the water will not infiltrate into the underlying soils so more compost should be used (even 100%) since it will absorb the excess run-off and release it back into the air through evaporation. In
fact, in cases of poorly draining sites, it would be advisable to increase the surface area size of your rain garden and limit the depth since the water won’t infiltrate quickly through underlying soils.

Conversely, sand allows faster infiltration and will drain up to twice as fast as compost. Therefore, if your goal is to have water flow through a rain garden into to an underdrain or into permeable layers of natural soil below, then the addition of sand will increase flow through the medium and limit the amount of water retention that will occur. Rain gardens with larger amounts of sand will dry out quickly which is frequently not desirable because than they require more summer watering.

Finally, now that you know the size of your rain garden (6 ft by 10 ft in the above example) and what your planting mix will be (say 80% compost and 20% sand) its easy to calculate the amount of material you will need. A 60 sq ft surface area that is 1 ft deep will require 60 cubic feet of material. Since 80% of the planting mix is compost, you will need 48 cubic feet of compost (approximately 1.8 cubic yards) and 12 cubic feet of sharp sand (approximately 0.5 cubic yards). In addition, you will need 3” of mulch across the entire surface area, which equates to 15 cubic feet of hardwood mulch (approximately 0.6 cubic yards).

Written by Donald D. Carpenter, Lawrence Technological University, August 2007 - Adapted for the 2009 ANLA Management Clinic.