Tendon/Ligament Repair
Team Collagen Constructs

Mario Rossi, Anne Tucker, Brian Ziola

Faculty Advisors: Dr. Yawen Li, Dr. Therese Bou-Akl
Technical Advisors: Dr. Tristan Maerz, Meagan Salisbury
Problem Identification

- Meetings with Dr. Bou-Akl & Beaumont to determine clinically relevant needs
- Researched literature for needs and refinement
- Observed needs:
 - Orthopedic need for tendon/ligament injury repair

Market Analysis

● Market Analysis:
 ○ Orthopaedic soft tissue market size - $5B
 ○ Growth: $9.39B by 2024

● Stakeholder Analysis:
 ○ Influential stakeholders: Patients, athletes, orthopaedic surgeons, insurance providers
 ○ Decision makers: Surgeons and insurance providers
Current Solutions

- **Non-surgical**
 - Icing
 - Pharmaceuticals
 - Physical therapy

- **Surgical**
 - Sutures
 - Grafts

- **Limitations**
 - Non-surgical: Temporary, cannot repair complex tendon injuries
 - Surgical: Does not distribute tensile load evenly, risk for immune rejection, and harvest site morbidity
Tissue Engineering

- Current studies use cells (usually stem cells) seeded on scaffold with or without mechanical stimulation
- Few stem cell-based tendon/ligament tissue engineering strategies translated to clinical trials
 - Primarily due to:
 - Significant cost
 - Technical challenges
 - Regulatory hurdles
 - Time-intensive nature of autologous and allogeneic stem cell harvest
Need Statement

There is a need for a similar biomechanical property, anatomically correct solution in tendon/ligament injury repair.

http://m2.wyanokecdn.com/56ff05590efd71e74f0a523c4a4632f0.jpg
Design Concept

- Absence of cells in design
Design Novelty / Design Parameters

● Novelty:
 ○ Biomimetic bioactive scaffold
 ○ Incorporation of alginate containing SDF-1 into scaffold to recruit MSCs

● Design Parameters:
 ○ Biocompatibility of materials
 ○ Biomechanical Properties
 ○ Chemokine release
 ○ Degradation rates
Hypothesis

The created biocompatible collagen scaffold will have similar biomechanical properties as native tendons/ligaments. Also, the scaffold will recruit stem cells and promote growth with the incorporation of SDF-1.
Estimated Deliverables

- Scaffold that has similar biomechanical properties to that of anatomical tendons
- Scaffold recruits MSCs in vitro
- Scaffold promotes cell growth
- Can be implanted in lieu of grafting
Methods

- **Test and Experiments to be done:**
 - Collagen fiber spinning and scaffold assembly
 - Scaffold characterization
 - Biocompatibility testing
 - Mechanical testing
 - Degradation study
 - Release study

- **Equipment to be used:**
 - MTS machine
 - Cell culture equipment
 - Laboratory equipment
 - Pipettes, hoods, centrifuge, vortexer
 - Confocal Microscope
 - Micro CT/ESEM
Design Validation

- Scaffold characterization:
 - Use ESEM and uCT to characterize scaffold microstructure

- Biocompatibility testing:
 - Evaluate cell attachment and proliferation using alamar blue assay and confocal fluorescence microscopy

- Mechanical testing:
 - Compare biomechanical properties with those reported in literature

<table>
<thead>
<tr>
<th></th>
<th>No. of Specimens</th>
<th>Elastic Modulus (MPa)</th>
<th>Linear Stress (MPa)</th>
<th>Maximum Stress (MPa)</th>
<th>Strain Energy to Failure (N·m/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older human (48-86 yrs.)</td>
<td>20</td>
<td>65.3 ± 24.0*</td>
<td>11.3 ± 5.1</td>
<td>13.3 ± 5.0†</td>
<td>3.1 ± 1.5†</td>
</tr>
<tr>
<td>Younger human (16-26 yrs.)</td>
<td>6</td>
<td>111 ± 26‡</td>
<td>25.5 ± 14.0†</td>
<td>37.8 ± 9.3‡</td>
<td>10.3 ± 3.1‡</td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>25</td>
<td>186 ± 26</td>
<td>56.2 ± 7.6</td>
<td>66.1 ± 8.4</td>
<td>19.4 ± 3.8</td>
</tr>
</tbody>
</table>
Design Validation

- Release study:
 - Determine SDF-1 release profile, burst release desired
- Degradation study:
 - Determine the rate at which the collagen structure breaks down
- MSC migration study:
 - Use boyden chamber assay to assess the MSC migration in close proximity to the collagen scaffold containing SDF-1
Budget

- Leftover LESA funding from previous years work
- Beaumont and Providence providing free access to equipment

<table>
<thead>
<tr>
<th>Material</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen</td>
<td>400</td>
</tr>
<tr>
<td>Sodium alginate</td>
<td>40</td>
</tr>
<tr>
<td>SDF-1</td>
<td>200</td>
</tr>
<tr>
<td>ELISA kit</td>
<td>500</td>
</tr>
<tr>
<td>Lab supplies</td>
<td>200</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$1,400</td>
</tr>
</tbody>
</table>
Timeline

<table>
<thead>
<tr>
<th>Senior Design Timeline</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>October</td>
<td>November</td>
</tr>
<tr>
<td>Background Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrospinning Collagen and Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alginate Incorporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biocompatibility Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaffold Characterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Study of SDF-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation Study of Collagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Processing/Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Testing & Data Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Presentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation Testing:

- Electropinning Collagen and Assembly
- Alginate Incorporation
- Biocompatibility Testing
- Scaffold Characterization
- Release Study of SDF-1
- Degradation Study of Collagen
- Migration Testing
- Mechanical Testing
- Data Processing/Analysis
- Final Testing & Data Collection
- Final Presentation
Team Structure
References

17
Questions?